
Header Files in C++

Introduction
• What is a header file?

• It is a file that is included (like copying/pasting) in a
C++ program and inserts statements into that
program which will allow the programmer to use
many of the facilities included in the C++ language
itself

• Header files can also be custom produced to meet
your own needs
• ex: Functions/Constants you may use in all of

your programs not part of the standard C++
implementation - like Student.

Why we need them?
• Speeds up compile time

• If everything is part of your program source code, it’ll get
VERY big. Having external libraries pre-compiled and then
having include files point to them requires the compiler to
only compile your changes to your own source code.

• Keeps your program code more organized
• Allows you to separate interface and

implementation
• ex: Function prototypes from Function definitions

Why we need them?

• Downside? Makes things a bit more
complicated

• But, the complications are worth it for the
benefits previously described.

• Note: Just do this slowly, and plan for your
include design.

Example #1: The Student
Structure

• Instead of defining your student structure directly in your
main program, define it outside of your main program and
include it. This way other programs can use the same
definition without having to ‘redefine’ it.

// student.hpp!
structure student {!
! string lname;!
! string fname;!
! string major;!
! int age;!
! double gpa;!
};

Example #1: The Student
Structure

• Now, in your main.cpp program source

// main.cpp!
#include “student.hpp”!
!
int main() {!
! student myStudent;!
! myStudent.lname = “Komanetsky”;!
! myStudent.fname = “Bill”;!
! //etc.!
}//main

The Include Statement
• The Include statement is basically a copy/paste type of

operation

• It takes the contents of the included file and simply
inserts or pastes it into the position in the program’s
source code where the include statement is located

• The include file is not compiled on it’s own, it is inserted
into your main source file and THAT is compiled

• Note that even though the include file is not compiled, it is
‘pre-compiled’ to assure all dependencies have been met

Types of Files
• For C programs

• Source file: filename.c
• Include file: filename.h

• For C++ programs
• Source file: filename.cpp
• Include file: filename.hpp (filename.h can also be

used)

• Why different file extensions?
• Depends upon the compiler

Include ifdef Statements
• Compilers are stupid. They don’t know what has

been included, if enough has been included, or
if duplicates have been included. Duplicates
are a BIG problem.

• If you have multiple include files which might
even include other include files, then you may
not be sure if an include file has already been
included until you see strange ‘Already Defined’
errors in your compiled source program.

Include ifdef Statements
• This is where the ifdef statement comes into play

• Much like checking to see what operating system the compiler is
running on, you can setup your own include variables to make
sure your include file is included only one time.

//student.hpp!
#ifndef VectorTest_student_h!
#define VectorTest_student_h!
structure student {!
!…!
};!
#endif

Include Dependencies
• Your included file may not be compiled on its own, but it must have all of

the things it uses specified in the include file.

• Example: since string is part of the standard namespace, if you don’t
include the using namespace std statement, you will get a ‘precompile’
error.

// student.hpp!
using namespace std;!
structure student {!
! string lname;!
! string fname;!
! string major;!
! int age;!
! double gpa;!
};

Include Dependencies
• So, make your include file as self contained as possible.

Include all dependencies it has inside of your included file.
Doing this may even remove include dependencies in your
main.cpp file!

• Some programmers say you should not have includes
inside of an include file. This is poor programming
because then, your main.cpp file must include everything
your include files needs. So, if you need to know what your
include file needs anyway, just put it in your include file!

What to Include in an
Include File

• Object Oriented Programs needs include files and
you should begin thinking in terms of objects and
including those includes which contain those
object definitions.

• So, for our student example, add everything that
affects ONLY a student into the student.hpp file.
• Look at all functions in your program. If a

function accepts and/or returns ONLY a student
(or some standard data types), then place that
function in your include file.

What Should You Do for
CS-1?

• Create your own include file, and call if student.hpp

• Place the Student structure in your include file

• Place the enumerated variables that the Student
structure uses in your include file

• Delete the Structure and enumerated variables from
your main program source code

• Place #include “student.hpp” in your main program
source code

What’s after simple Include
Files?

• If you have program code (that includes functions) that will
be used by many programs, but you don’t want them to
have to compile your functions (or you want them to be
kept secret), then you can compile your include files into a
library.

• This means creating a .cpp file that includes your
functions, but no main function. Then, you compile the
program into an object file or ‘library’

• Now you have a library that you can add to your linker
when you write your actual ‘main’ program. No Source
Code!!

Static Libraries
• Here are the steps to creating a library to be used

during ‘Link’ time.
1.Create an include file which has your function
prototypes defined. Example: myfunctions.hpp

2.Create your source file for your functions and
implement those functions. Example:
myfunctions.cpp

3.Compile (do not link) your static library.
• Now you can create your main C++ program, include

the .hpp file (myfunctions.hpp), and then link your
library.

// MathFuncsLib.h
!

namespace MathFuncs
{
 // Returns a + b
 static double Add(double a, double b);
!
 // Returns a - b
 static double Subtract(double a, double b);
}

// MathFuncsLib.cpp
!
#include "MathFuncsLib.h"
!
#include <stdexcept>
!
using namespace std;
!
namespace MathFuncs
{
 double MyMathFuncs::Add(double a, double b)
 {
 return a + b;
 }//Add
!
 double MyMathFuncs::Subtract(double a, double b)
 {
 return a - b;
 }//Subtract
!
 }//namespace MathFuncs

// MyExecRefsLib.cpp
!
#include <iostream>
!
#include "MathFuncsLib.h"
!
using namespace std;
!
int main()
{
 double a = 7.4;
 int b = 99;
!
 cout << "a + b = " <<
 MathFuncs::MyMathFuncs::Add(a, b) << endl;
 cout << "a - b = " <<
 MathFuncs::MyMathFuncs::Subtract(a, b) << endl;

 return 0;
}

